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Abstract 

The effect of microjet ( jet) injection on the noise from supersonic jets is investigated. Three 

convergent-divergent (C-D) nozzles and one convergent nozzle, all having the same exit 

diameters, are used in the study. The jets are injected perpendicular to the primary jet close to 

the nozzle lip from six equally-spaced ports having a jet-to-primary-jet diameter ratio of 0.0054. 

Effects in the overexpanded, fully expanded as well as underexpanded flow regimes are 

explored. Relative to the effect on subsonic jets, larger reductions in the overall sound pressure 

level (OASPL) are achieved in most supersonic conditions. The largest reductions are typically 

associated with suppression of screech and transonic tones.  For a shock-free, fully expanded 

case, the OASPL reductions achieved are comparable to that in the subsonic case; the same 

correlation, found for subsonic jet noise reduction at shallow observation angle, applies. 

 

Nomenclature 

d    microjet ( jet) port diameter (=0.203 mm) 
D   primary nozzle exit diameter (=37.6 mm) 

I reduction in overall sound pressure level (OASPL) 
M Mach number 
MJ „Fully expanded jet Mach number‟ (defined in text) 
MD Design Mach number 

p supply (total) pressure for primary jet or jet  
SPL sound pressure level  

 microphone angular (polar) location, relative to downstream jet axis 
 
 
Subscripts 
a ambient condition 
j primary jet condition 
0 stagnation condition 

 microjet condition 
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1. Introduction 

Effects of jet injection on the radiated noise from a primary jet have been addressed in many 

previous studies (e.g., [1-4]). The present study is a continuation of the work reported in [4] in which 

effects on subsonic jets from a convergent nozzle were addressed. A small but clear noise reduction 

in the direction of peak noise radiation (i.e., at shallow angles relative to the downstream jet axis) was 

observed. The reduction in overall sound pressure level (OASPL) improved with increasing jet 

pressure. It was found that smaller diameter ports with higher driving pressure, but involving less 

mass fraction and thrust, could produce better noise reduction. As much as 2 dB reduction in OASPL 

was achieved with as little as 0.05% mass fraction. The OASPL reduction in the shallow angle 

direction correlated with the ratio of jet-to-primary-jet driving pressures normalized by the ratio of the 

corresponding diameters (p d /pjD). That is, when all data, including water and CO2 injection data, 

were plotted as a function of this parameter they collapsed reasonably well. The OASPL reduction 

( I, in dB) in such a plot increased almost linearly and followed the correlation, I=12.0 p  d/pjD. The 

scaling with p d /pjD was observed only in the jet‟s downstream direction and thus applied to 

turbulent mixing noise attenuation. At a measurement location perpendicular to the jet axis, the result 

was mixed and often an increase in the noise was noted. The latter increase, occurring at large 

values of p d /pjD, was found to be associated with a high-frequency „cross-over‟ in the sound 

pressure level spectra; this occurred with gaseous injection but not with water injection. An 

interested reader may find further details in the cited reference. 

The study was continued to explore the effect of the jets on supersonic jet noise. Three 

convergent-divergent nozzles, having the same exit diameter and outer geometry as the convergent 

nozzle used in the earlier study, were fabricated for this purpose. The combination of nozzles allowed 

an exploration of the jet effect in various flow regimes. It is well known that supersonic jets, when 

run at off-design condition, produce shock-associated noise in addition to turbulent mixing noise. Two 

such shock-associated noise components have been studied widely: screech tones [5, 6] and 

broadband shock-associated noise (BBSN) [6, 7]. These two components trace to interactions 

between the turbulent flow structures and the shock-train that form downstream of the nozzle in the 

jet plume. Relatively less known are the noise components that occur when the shock resides within 

the divergent section of the nozzle. With that flow condition, there can be a resonance yielding 

„transonic tones‟ [8]. Even in the absence of any tones such jets are found to involve an elevated 

level of broadband noise, termed „excess broadband noise‟ (EBBN), as reported in [9].  

In the present study, effects of jet injection on the various noise components have been 

explored covering different flow regimes. The objective of this paper is to summarize the results 
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obtained so far. Effects of the injection on overexpanded and underexpanded conditions as well as 

one case of fully expanded condition are described. The effect of the injection on fully expanded 

condition is compared with earlier subsonic results and an attempt is made to understand how the 

individual noise components are affected.  

 

2. Experimental Procedure 

The experiments were conducted in an open jet facility at NASA Glenn Research Center. Three 

convergent-divergent (C-D) nozzles and a convergent nozzle were used, all having the same exit 

diameter of 37.6 mm. Each of the four nozzles was 10 cm long and could be screwed to a fixed 

receptacle. The receptacle was attached to the 76.2 cm diameter plenum chamber of the jet facility 

(Fig. 1a). The internal diameters and the slopes at the junction between the screw-in piece (marked 

„B‟ in Fig. 1a) and the receptacle (marked „A‟) were matched so that the two together formed the full 

nozzle, contracting from 13.1 cm inlet diameter to the dimensions of the given nozzle. The divergent 

sections of the nozzles were designed following the method of characteristics. The length of the 

divergent section varied depending on the design Mach number; thus, the length of the 

convergent section also varied. A fourth order polynomial fit was used to design the convergent 

section, matching the slope of the upstream receptacle (-0.32) and bringing the slope to zero at 

the throat. The interior contours of the four nozzles are shown in Fig. 1(b) and the essential 

dimensions are listed in Table 1.  

 

Nozzle MD Throat 
diameter, Dt 

(cm) 

Divergent 
section 

length (cm) 

Mj -
sub 

Mj –
shock 

M10 1.0 3.759 0 -- -- 

M15 1.5 3.466 3.981 0.610 0.779 

M18 1.8 3.139 4.943 0.454 0.842 

M22 2.2 2.659 6.298 0.305 1.026 

 
Table 1 Nozzle dimensions and other characteristics; all nozzles (screw-in pieces) are 10 cm 
long and have exit diameter D= 3.76 cm.  
 

The „fully-expanded jet Mach number,‟ 
2/1/)1(

0 )
1

2
)1)/(((
k

ppM kk

ajj , is used as 

independent variable in the study. Note that it is a fictitious Mach number at off-design run 

conditions in the supersonic regime. It represents the Mach number had the flow expanded fully 

for a given pressure ratio, pj0/pa, where pj0 and pa are the jet plenum and ambient pressures, 

respectively. In Table 1, Mj -sub and Mj –shock represent values of Mj when the shock is at the 

throat and at the exit, per one-dimensional nozzle flow analysis. The notation MD represents the 
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design Mach number; nozzles with MD = 1.0, 1.5, 1.8 and 2.2 are designated as M10, M15, M18 

and M22, respectively. (Note that the same notations were used in [9] but for a different set of 

nozzles). 

The jets were injected via a ring manifold (marked „C‟ in Fig. 1a). The outer geometry of all 

nozzles was the same so that, when mounted and pressed all the way in, the manifold sat flush with 

the nozzle exit. There were six threaded outlets on the manifold that could be fitted with tiny injectors. 

For the present study, six cylindrical injectors each with diameter d=0.203 mm were used. The 

injection was perpendicular to the primary jet axis. A close-up view of the manifold, with one of the 

injectors in the foreground, is shown in Fig. 1(c); further description of the manifold and the injectors 

can be found in [4]. The injection fluid was air from a pressurized source („K-bottle‟) and all 

experiments were conducted for cold flow, i.e., the total temperature of the jet and the jet was the 

same as in the ambient.   

The exit flow properties of the jets including the mass fraction were calculated from the 

supply pressure p   and the port diameter, using isentropic nozzle flow equations [4]. Far-field noise 

was measured with (B&K model 4135) microphones located at  =90°, 60° and 25°; the polar 

location  was referenced with respect to the downstream jet axis. The distances of the three 

microphones from the nozzle exit were 33, 34.9 and 57.5 diameters, respectively. Most of the 

data presented are for  =90° and 25°. The spectral data were acquired by a PC based system 

coupled to National Instruments hardware using Labview software. Spectral analysis was done 

digitally and the OASPL data were obtained by integration of the spectra. All data acquisition, 

activation of the jet as well as setting of regulator pressure were done under remote computer 

control.  

Noise source locations, and the effect of jets thereupon, were investigated briefly by the 

phased-array technique [12]. The data acquisition system consisted of 48 microphones flush-

mounted to a 1 m x 1 m aluminum plate. The microphones were arranged in a series of „log 

spirals.‟ The data were reduced using classical „beamforming‟ in the frequency domain that 

assumed stationary, incoherent, point sources. The measured acoustic source region was 

superimposed on the top of an image of the flow-field taken by a camera placed near the center 

of the microphone array. The output was a stack of beamform maps, each corresponded to a 

different frequency band and showed the location of the dominant noise source or sources for 

that band, as 2D color contours. The dynamic range of the contours (maximum minus minimum 

value) was the same for each map but the peak value varied from map to map. An interested 

reader may find further details of the technique in the cited reference.  
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3. Results 

Noise characteristics of the four nozzles without any jet injection are explored first. The 

results are shown in Figs. 2(a)-(d). Overall sound pressure levels, measured at the three polar 

locations, are plotted as a function of Mj. The vertical lines in these figures demarcate flow 

regimes based on one-dimensional nozzle flow analysis (long-dashed line: when throat is 

choked; short-dashed line: when the shock exits the nozzle; chain-dashed line: when flow is 

fully-expanded). In each figure, also shown are the tone frequency data as the pressure ratio 

(and hence, Mj) is varied; the scale for the frequency is indicated on the top right of each figure. 

The frequency data represent screech tones [5] as well as transonic tones („x-tones‟) occurring 

with the C-D nozzles [8], as marked in the figures.  For the convergent case in Fig. 2(a) the well-

known screech stages (A1, A2, B, C, D and E) are observed and these are identified in the 

caption. With the M15 nozzle (in Fig. 2b), only three stages of screech were observed in the Mj 

range 1.1 – 1.8. By comparison with the convergent case, these appear to be (from left to right) 

the axisymmetric (A), flapping (B) and again another flapping mode (D). Corresponding data for 

the M18 and M22 cases are shown in Figs. 2(c) and (d), respectively. With each, loud transonic 

tones were observed in the range Mj <1.1. Each of them also involved screech at high Mj (>1.4).  

When the tones occurred, naturally the overall sound pressure level was also relatively 

high. This partially caused the bumps and undulations in the OASPL data. For example, a mild 

bump is noted in Fig. 2(a) for the convergent case around Mj =1.3. This corresponds to the 

flapping (B) mode screech. A similar bump is noted in Fig. 2(b) around the same Mj location. 

Among the different screech modes, the flapping mode appears to yield the largest increase in 

the OASPL. It has been shown before that this mode also causes a large increase in the jet 

spreading rate [10, 11]. The transonic tones also result in large increases in the OASPL causing 

bumps in the curves in the range 0.6< Mj <1; see Figs. 2(c) and 2(d).  It is emphasized that the 

increases in the OASPL and the resulting bumps are not only due to screech and x-tones. 

Broadband noise components BBSN and EBBN also contribute. For example, the bump in Fig. 

2(b) around Mj =0.85 is attributable mainly to EBBN since x-tones were absent; the contributions 

of EBBN and BBSN are discussed further in the following.  

In Fig. 2(b), it is also noted that there is a conspicuous dip in the curves at Mj =1.5 – 

especially at the larger  locations. This is because the flow is fully expanded at this Mj for the 

M15 nozzle and the noise is due only to turbulent mixing. A similar trend is seen for the M18 

case (Fig. 2c) where the amplitude drops as Mj =1.8 is approached. This attests to the fact that 

the nozzles have been designed well and nearly shock-free operation is achieved at the design 
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condition.  Because of supply pressure limitation with the facility, the fully expanded condition 

could be obtained only with the M15 nozzle and not with the nozzles with higher MD. 

The same OASPL data from Fig. 2 are replotted to directly compare the trends for the 

four nozzles. These are shown in Figs. 3(a) and 3(b) for  =25° and 90°, respectively. It can be 

seen that the C-D nozzles are significantly louder than the convergent nozzle in the low end of 

the overexpanded regime (approximately for Mj <1.2). The increase in the noise is attributable 

only partly to the x-tones. In fact, the increased levels are primarily due to the broadband 

component EBBN. The EBBN, noticeable in the range of 0.3< Mj <1.2, becomes more 

pronounced with nozzles of higher design Mach number; an interested reader may find further 

details of these characteristics in [9]. 

The effect of jet injection on the sound pressure level spectra is now considered. Figure 

4 shows spectral data with and without jet injection, for the convergent nozzle. Data for three 

values of Mj are shown in Figs. 4(a), (b) and (c), as examples. At each Mj, data for injection at p  

= 6200 kPa (dashed curves) are compared to the no-injection case (solid curves). The pair of 

curves at the top of each figure are for  =25° (with scale on left) and the pair at the bottom are 

for  =90° (with scale on right). For the subsonic case in Fig. 4(a), it can be seen that jet 

injection has reduced the energy near the low-frequency peak (turbulent mixing noise) but at the 

expense of an increase at high frequencies. The OASPL (shown at the last column of the 

legend) has dropped by about 1.5 dB at  =25° but increased by about 1 dB at  =90°. The 

parametric dependence of OASPL reduction for subsonic jets and phenomena such as the high-

frequency cross-over of spectral energy have been discussed in [4] and these will not be 

repeated here. Turning attention to the supersonic condition, it can be seen in Fig. 4(b) that 

screech (mode B; Mj = 1.27) has been eliminated by the injection. In addition, broadband levels 

have also decreased. Broadband shock-associated noise (BBSN), characterized by the hump 

on the right in the 90° spectra, apparently has been affected little. In fact, with injection it has 

been „unearthed‟ in this case since the high levels due to screech have been reduced. At the 

highest Mj in Fig. 2(c), similar but less pronounced effects of the injection are observed. 

Examples of spectral data for the M15 nozzle are similarly shown in Fig. 5. Trends 

similar to those noted with Fig. 4 are observed. However, although the broadband energy has 

been reduced screech has not been eliminated completely (Fig. 5a). At Mj = 1.511 (only slightly 

off from fully-expanded condition, Fig. 5b), the jet effect on the OASPL is relatively small but 

still substantial. There is about 1.5 dB reduction in OASPL at 25° but an increase at 90°. At the 

highest Mj (Fig. 5c) the effect is again less pronounced.  
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Corresponding spectral data for the M18 and M22 nozzles are shown in Figs. 6 and 7, 

respectively. It can be seen that with the M18 case, in Fig. 6(a), the x-tone has persisted under 

the injection although both amplitude and frequency have decreased somewhat.  At lower 

values of Mj with this nozzle ( 0.6), the x-tone could be completely eliminated by the injection; 

this will be evident from the OASPL reduction plots shown in the following. With the M22 case, 

on the other hand, the injection was ineffective in eliminating the x-tones at any value of Mj; 

examples can be seen in Fig. 7(a) and (b).  Screech tone was also affected little for this nozzle 

(Fig. 7c). Thus, while screech is eliminated by the injection with the convergent nozzle, the 

effect progressively diminishes with nozzles of higher design Mach number. Similarly, the effect 

on transonic tone also diminishes with nozzles of higher design Mach number.  For the higher 

MD nozzle, since the angle of divergence is greater the diminishing effect of the jet is likely to 

be due to the fact that the injection location is farther away from the core of the jet.  The problem 

is aggravated by boundary layer separation which is expected to occur downstream of the 

shock, with the higher MD nozzles.  

The reductions in the OASPL due to jet injection for the convergent nozzle are shown 

in Fig. 8 (a) and (b) for  =25° and 90°, respectively. The solid curves are generated by poly-

nomial fits through the data. The data has considerable scatter and too much emphasis must 

not be placed on the exact trends exhibited by these curves. In fact, when the scatter is too 

large (e.g. at Mj =1.276) the fitted curves show trends that may not be meaningful and thus are 

not shown. The data are plotted as a function of the normalized pressure ratio; this is the para-

meter that was found to correlate the OASPL reduction data at shallow angles for subsonic jets 

[4]. As stated before, the subsonic correlation applies for only shallow angular locations and it is 

shown by the dotted line in Fig. 8(a). It can be seen that reductions as large as 5 dB, much 

more than that observed at the subsonic condition, are achieved with the supersonic jets. The 

reductions are only partly due to the elimination of screech. Referring back to the SPL spectra in 

Fig. 4(b) it can be seen that most of the reduction yields from a decrease in the broadband 

levels. At Mj =1.276 for  =90°, as high as 7 dB reduction in OASPL is obtained due to elimi-

nation of B-mode screech and the associated broadband levels. For the latter angular location, 

some of the cases (e.g., at Mj =1.471) exhibit an increase in the OASPL (negative ordinate).  

Corresponding data for the M15 nozzle are shown in Fig. 9. For Mj =1.516 which is only 

slightly off from the design condition, the OASPL reduction at  =25° is significantly larger than 

the subsonic correlation (Fig. 9a, triangular data points). However, the reduction becomes less 

as the design condition is closely matched, as discussed shortly. For the M18 case (Fig. 10), 

OASPL reductions as large as 10dB are achieved at Mj =0.64 when the x-tone is completely 
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eliminated by jet injection. The large effect is also due to a reduction in EBBN. Figure 11 shows 

the OASPL reduction data for the M22 case representing the nozzle with highest design Mach 

number tested. The overall effect of the jets is relatively less (within 2 dB at   =25°) – although 

the effect is still comparable or better than the subsonic correlation. 

Figure 12 shows another set of OASPL reduction data closer to the design condition for 

the M15 nozzle (Mj =1.501). For clarity this data-set is shown separately and not with 

corresponding data in Fig. 9(a); the set of data for Mj =1.516 has been repeated for clear 

comparison. The OASPL reductions now fall closer to the subsonic correlation. There is 

deviation at higher jet pressures (by about 0.5 dB; note that ordinate scale is expanded relative 

to that in Fig. 9a). However, a completely shock-free and perfectly expanded supersonic jet is 

hard to achieve and the deviation is probably due to residual shock effect. The deviation is also 

approximately within the data scatter range in [4]. Thus, it appears that the subsonic correlation 

(relevant to turbulent mixing noise reduction) applies to fully-expanded supersonic jets too. 

Perhaps, this is not a surprise since a fully-expanded jet only involves turbulent mixing noise. 

For jets at off-design run conditions, on the other hand, the injection additionally reduces shock-

associated noise. Thus, more pronounced noise reduction is achieved with the latter jets; this is 

underscored by the data in Fig. 12.  

Thus, among the four nozzles the greatest noise reduction is noted with the M18 case. 

The overall jet effect for this nozzle is shown in Fig. 13 for injection pressure p =6200 kPa. For 

reference, corresponding spectral data can be found in Fig. 6. The injection has reduced the 

levels substantially -- by more than 10dB in the range, 0.5<Mj<0.75. The jet corresponding to 

several of the data points within this range do not involve x-tones and the reduction is due only 

to an effect on the broadband component EBBN.  It is also noted that at no condition, in the Mj 

range of 0.5 – 1.2, do the OASPL levels drop to coincide with the convergent case levels. That 

is, EBBN could not be completely eliminated by the injection within the parameters covered. 

However, there is clearly a favorable effect of the injection towards reducing EBBN. This is 

further illustrated in Fig. 14 for two cases; (a) M15 nozzle at Mj =1.02 and (b) M18 nozzle at Mj 

=1.16. For each case and at each angular location there is a general reduction in the broadband 

levels. In Fig. 14(a), a „cross-over‟ in the amplitudes is noted for f>20 kHz. This appears to be 

mostly due to noise from the jets themselves. The cross-over is absent in Fig. 14(b) because 

the baseline noise is already high – more than 5 dB larger than that for the M15 case in Fig. 

14(a), rendering the noise from the jets less significant.  As stated earlier, further discussion on 

the „cross-over‟ and jet self-noise can be found in [4].  
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With regards to the effect on BBSN, it appears that jets in most cases aggravate the 

situation. We have seen in Figs. 4 and 5 that BBSN was „unearthed‟ by the injection as screech 

noise was reduced. Figure 15 documents two additional cases, for the M10 and M15 nozzles, 

where BBSN has been accentuated by the injection. This can be seen from the 90° spectra in 

either figure. For the M15 case (Fig. 15b), a relatively higher injection pressure (10.3 MPa,     

p d /pjD  0.13) has been used to delineate the point. While about 2.3 dB reduction in OASPL 

has occurred at 25°, an increase by about 3.5 dB has occurred at 90°.  The latter increase is 

due mostly to an accentuation of BBSN as clear from spectra in Fig. 15(b).  

Finally, effects of jet injection on noise source location are briefly discussed. A set of 

data for the baseline flow (without injection) is first presented in Fig. 16. These data are for the 

M22 nozzle at Mj =1.042, involving a „dull‟ x-tone at 2.236 kHz. Noise spectrum, taken 

simultaneously with the phased-array data, by one of the microphones in the array is shown at 

the top (corresponding far-field SPL spectra are in Fig. 7b). As stated in the experimental 

procedure section, the output of the phased-array measurement was a stack of contours at 84 

frequencies over the spectrum. The contours at only 5 frequencies (0.63, 2, 2.236, 10 and 25 

kHz) are shown in Fig. 16, as examples; the frequency locations are marked in the spectrum. 

The brightest regions in these plots denote the source of most intense noise radiation at 

corresponding frequencies. One finds that at all frequencies, including at the x-tone, the sources 

are centered right at the nozzle exit. It should be noted that the same observation was made 

either for sharp x-tones or when the tone was not visible in the spectrum and the noise was due 

only to EBBN. This provided a confirmation of earlier inference [8, 9] that these two components 

are due to unsteady shock motion within the divergent section of the nozzle.   

With injection, yielding significant noise reduction, no clear change in the extent and the 

location of the source could be detected. Two sets of data showed a curious effect of the 

injection and these are included in Fig. 17 for a high subsonic case and in Fig. 18 for a 

supersonic case. In each figure, four frames are shown for four frequency bands as indicated. In 

each frame, the upper picture is for the baseline flow without any injection while the lower 

picture is with injection. In the subsonic case at Mj =0.95 (Fig. 17), the noise source is drawn 

closer to the nozzle under the injection at all frequencies (e.g., from about 5D to 2D at 10 kHz). 

At the supersonic condition at Mj =1.27 (involving B-mode screech, Fig. 18), on the other hand, 

the effect is opposite. The source at all frequencies has elongated and been pushed farther 

downstream by the injection (e.g., from 8D to 10D at 10 kHz). At the highest frequency (Fig. 18), 

the shock train has apparently shrunk but the source region has elongated under the injection. A 

satisfactory explanation for the observed effects seen with the phased-array data, and for the 
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underlying mechanism of noise suppression, could not be reached at this time and will require 

further investigation.  

 

4. Conclusions 

The effect of microjet injection has been investigated for supersonic jets covering both 

underexpanded and overexpanded conditions as well as one fully expanded condition. Relative 

to the effect on subsonic jets, larger reductions in the overall sound pressure levels are 

achieved in most supersonic conditions. Very large reductions are typically associated with 

suppression of screech and transonic tones. This involves not only the elimination of the tones 

but also a concomitant reduction in broadband levels. For a shock-free fully expanded case, the 

reductions achieved are comparable to that in the subsonic case; the same correlation found for 

subsonic jet noise reduction at shallow observation angle also applies. The data also suggest 

that jet injection has the promise for reduction of the broadband noise component EBBN 

occurring with overexpanded jets. However, it appears that the component BBSN occurring in 

both overexpanded and underexpanded regimes may get accentuated under the injection.  

Thus, for a fully-expanded case while the injection reduces noise in the direction of peak noise 

radiation an increase is noted in the perpendicular direction due to an elevated level of BBSN. 
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Fig. 1 Experimental setup; (a) picture of nozzle,  

(b) nozzle internal contours, (c) jet manifold.  
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Fig. 2(a) Caption next column. 
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Fig. 2 OASPL versus Mj for: (a) M10, (b) M15, 
(c) M18 and (d) M22 nozzles. In each figure, 
data are shown for three observation angles. 
Also shown at the top of each figure are the tone 
frequency data (scale on top right). Screech 
modes for the convergent case (Fig. 2a) are: 
deltas, A1; gradients, A2; right triangles, B; left 
triangles, C; diamonds, D; squares: E. 
 



 

13 

 

 
 
 

M
j

O
A

S
P

L
(d

B
)

0.5 1 1.5

80

90

100

110

120

130

M10

M15

M18

M22

(a) =25
o

 

M
j

O
A

S
P

L
(d

B
)

0.5 1 1.5

80

90

100

110

120

130

M10

M15

M18

M22

(b) =90
o

 
Fig. 3 OASPL versus Mj for the four nozzles at: 

(a) =25° and (b) =90°. 
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(c)

 
Fig. 4 SPL spectra for the M10 nozzle with and 

without jet injection at 6200 kPa; solid line: no 
injection, dashed line: with injection. In each 

figure, data for =25° and 90° are shown, with 
scale for 25° on left and for 90° on right. (a) Mj = 
0.95, (b) Mj =1.27 and (c) Mj =1.6. 
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Fig. 5 SPL spectra for the M15 nozzle with and 

without jet injection at 6200 kPa; solid line: no 
injection, dashed line: with injection. In each 

figure, data for =25° and 90° are shown, with 
scale for 25° on left and for 90° on right. (a) Mj = 
1.24, (b) Mj =1.51 and (c) Mj =1.69. 
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Fig. 6 SPL spectra for the M18 nozzle with and 

without jet injection at 6200 kPa; solid line: no 
injection, dashed line: with injection. In each 

figure, data for =25° and 90° are shown, with 
scale for 25° on left and for 90° on right. (a) Mj = 
0.936, (b) Mj =1.416 and (c) Mj =1.69. 
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Fig. 7 SPL spectra for the M22 nozzle with and 

without jet injection at 6200 kPa; solid line: no 
injection, dashed line: with injection. In each 

figure, data for =25° and 90° are shown, with 
scale for 25° on left and for 90° on right. (a) Mj = 
0.63, (b) Mj =1.04 and (c) Mj =1.65. 
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Fig. 8 Reduction in OASPL versus normalized 

jet pressure for the M10 nozzle. „Jet Mach 
number‟ Mj and corresponding baseline OASPL 

are indicated in legend; (a) =25°, (b) =90°. 
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Fig. 9 Reduction in OASPL versus normalized 

jet pressure for the M15 nozzle. „Jet Mach 
number‟ Mj and corresponding baseline OASPL 

are indicated in legend; (a) =25°, (b) =90°. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

p d/p
j
D

O
A

S
P

L
R

e
d

u
c
ti
o

n
(d

B
)

0 0.04 0.08 0.12 0.16 0.2

-2

0

2

4

6

8

10

12

M
J
= 1.697 oaspl = 133.6

M
J
= 1.420 oaspl = 126.7

M
J
= 1.317 oaspl = 122.8

M
J
= 1.165 oaspl = 120.0

M
J
= 0.935 oaspl = 116.6

M
J
= 0.639 oaspl = 108.1

SUBSONIC CORRELATION

(a) M18 =25
o

 

p d/p
j
D

O
A

S
P

L
R

e
d

u
c
ti
o

n
(d

B
)

0 0.04 0.08 0.12 0.16 0.2

-2

0

2

4

6

8

10

12

M
J
= 1.697 oaspl = 126.9

M
J
= 1.420 oaspl = 127.9

M
J
= 1.317 oaspl = 121.9

M
J
= 1.165 oaspl = 118.4

M
J
= 0.935 oaspl = 123.4

M
J
= 0.639 oaspl = 111.6

(b) M18 =90
o

 
Fig. 10 Reduction in OASPL versus normalized 

jet pressure for the M18 nozzle. „Jet Mach 
number‟ Mj and corresponding baseline OASPL 

are indicated in legend; (a) =25°, (b) =90°. 
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Fig. 11 Reduction in OASPL versus normalized 

jet pressure for the M22 nozzle. „Jet Mach 
number‟ Mj and corresponding baseline OASPL 

are indicated in legend; (a) =25°, (b) =90°. 
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Fig. 12 Reduction in OASPL versus normalized 

jet pressure for the M15 nozzle, similar to Fig. 
9, with additional set of data at fully-expanded 
condition. 
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Fig. 13 OASPL versus Mj for the M18 nozzle 

with and without jet injection, compared to the 

convergent (M10) case; p  = 6200 kPa; (a) 

=25°, (b) =90°.  
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Fig. 14 SPL spectra showing a favorable 

effect of jet injection on EBBN; solid line: no 
injection, dashed line: with injection. In each 

figure, data for =25° and 90° are shown, with 
scale for 25° on left and for 90° on right. (a) 
M15 case, Mj = 1.02, 6200 kPa, (b) M18 case, 

Mj =1.16, p  =6200 kPa. 
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Fig. 15 SPL spectra showing an adverse 

effect of jet injection on BBSN; solid line: no 
injection, dashed line: with injection. In each 

figure, data for =25° and 90° are shown, with 
scale for 25° on left and for 90° on right. (a) 
M10 case, Mj = 1.473, 6200 kPa, (b) M15 

case, Mj =1.501, p  =10.3 MPa. 
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Fig. 16 Noise source location measured by 
phased-array technique at indicated frequencies 
(kHz); the frequency locations are marked in the 
microphone spectra shown at top. Data are for 

M22 nozzle (no jet injection) at Mj =1.042 
yielding x-tone at 2.236 kHz.  
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
(a) f=0.63 

 
(b) f=2 

 
(c) f=10 

 
(d) f=25 

Fig. 17 Noise source location measured by 
phased-array technique at indicated frequencies 
(kHz); data are for M10 nozzle at Mj =0.95. In 
each frame top picture is for no injection and 

bottom picture is for jet injection at 6200 kPa.  
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(a) f=0.63 

 
(b) f=2 

 
(c) f=10 

 
(d) f=25 

Fig. 18 Noise source location measured by 
phased-array technique at indicated frequencies 
(kHz); data are for M10 nozzle at Mj =1.27 
involving B-mode screech. In each frame top 
picture is for no injection and bottom picture is 

for jet injection at 6200 kPa. 
 
 
 
 
 
 
 
 
 


